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In this paper, we adapt to the ideal 1D lagrangian MHD equations a class of
numerical schemes of order one in time and space presented in an earlier paper
and applied to the gas dynamics system. They use some properties of systems of
conservation laws with zero entropy flux which describe fluid models invariant by
galilean transformation and reversible for regular solutions. These numerical schemes
satisfy an entropy inequality under CFL conditions. In the last section, we describe a
particular scheme for the MHD equations and show with some numerical applications
its robustness and accuracy. The generalization to full Eulerian multidimensional
MHD will be the subject of a forthcoming paper.co 1999 Academic Press

Key Wordsmagnetohydrodynamics; finite difference methods.

1. INTRODUCTION

The MHD equations describe the flow of a conducting fluid in the presence of a magt
field. The system is written in a conservative form and is hyperbolic with seven real eigel
ues. It presents three different waves: slow waves,élfwaves, and fast waves. Of course
this system shares similarities with the gas dynamics system. Nevertheless, its study is
difficult because it is neither strictly hyperbolic nor convex. The non-strict hyperbolic
means that the eigenvalues are not necessarily distinct. The non-convexity signifie
some waves are neither non-linear nor linearly degenerate. The question of the stabi
these waves is more or less an open question at the present time, both from a theoretic
a numerical point of view. In spite of these difficulties, numerical schemes have been d
oped to solve this system. In many cases, these schemes are generalized schemes tf
highly efficient for the equations of gas dynamics. We will mention a few approaches. |
and Wu [5] proposed a Roe-type method but their technique required that the ratio of sp
heatsy be equal to 2. Later, in the case of the lagrangian equations, €aad¢8] studied
a Roe matrix with the arithmetic average for gnyDai and Woodward [9, 10] proposec
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66 BEZARD AND DESPRES

an approximate method for solving the MHD Reimann problem. All these schemes
of Godunov-type. In this paper, we present a new class of numerical schemes [13]
some fluid systems and we generalize to MHD equations. These schemes are basec
new symmetrization result for Lagrangian systems (see also [4]). We demonstrate tha
schemes are entropic under CFL conditions and positively conservative: this is detaile
Lemma 3.1. An interesting feature of these schemes is their simplicity in comparison w
for example, the Roe method [8—14]. In this work we restrict ourselves to one order sche
(in space and time) because they are better suited for a rigorous analysis than high c
schemes. Nevertheless we think that the extension of our approach to high order sch
using standard techniques is straightforward. We also restrict to the one-dimensional ¢
it is sufficient in order to present the main features of our approach. We are now work
on the extension to the multidimensional case. See also [16] for a quite different appro
in the multidimensional case.

The plan of this paper is the following. In the first section, we will present gener
properties of systems of conservation laws with vanishing entropy flux. Then, we w
show that the system of MHD equations satisfies such properties. In the second sec
a class of schemes will be constructed and we mention in particular one scheme. Fin
we present numerical examples to illustrate the behavior of this lagrangian scheme. T
results will be compared to other schemes. In the last section, we propose a summary
some discussions.

2. SYSTEMS OF CONSERVATION LAWS WITH VANISHING ENTROPY FLUX:
APPLICATION TO THE MHD EQUATIONS

In afirst step, we exhibit some properties of systems which describe fluid models invari
by galilean transformation and reversible for regular solutions [13]. Then, we will shc
that the system of lagrangian one-dimensional MHD equations belongs to this categor
systems.

2.1. Properties of Systems of Conservation Laws with Vanishing Entropy Flux

We consider the system of conservation laws

ou  ofU
L) _

— 1
ot om 0 @

with U a vector ofRY, d > 1, andU — f (U) a smooth function defined frof® to RY.
We suppose that, for this system (1), there exists an enfyopliich is a strictly convex

function ofU. This function satisfies the inequality
d%

The vectolJ is also a solution of the system

d§(U) n IFU) _

0’
ot om
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whereF (U) is called the entropy flux. We have the additional relation

IFU) (dg )tdf(U)

du du/ du

We suppose that for system (1), the entropy flux is vanishing, therefore

dg \'dfU) _
(du) du

Let us introduce the change of variablés— V (U) where

dé
V=—.
du

One can write

d& \'dfU) (dfU) [dfU)dV
<dU) au "’ Vigu TV au T

As £ is strictly convex, the change of variabMs— V (U) is regular and the matrig% is
invertible. We deduce that

df(U)

V'[
av

=0. 2

By applying a theorem from [15], we know that a necessary and sufficient condition
system (1) to possess a strictly convex entropy is that there exists a change of depender
ables that symmetrizes (1). The choie= df ensures that the matrﬂ# is symmetric
and from (2), we obtain

In the cases considered here, the last compo¥giof V is non-zero. Thus we introduce
the vectord of R~ defined by

Vi Va1

=Wy, .., Yy D) =y )

(W1, d-1) <Vd Ve )

From Eq. (3), we deduce (see [13]) the existence of a fundtio®?~* — R~ such that
f(U)=fw) =(fy, fo ..., fol.

We state the theorem

THEOREM2.1. The system of conservation lagls with vanishing entropy fluxwhich
describes fluid models invariant by Galilean transformation and reversible for regu
solutions can be written in the form

U 9 MW
—t=| =0, 4)
at  om\ —lutMw

where M is a constant matrix @91 x RI-1,
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Proof. The proof is given in [13]. m

The vectorU is composed ofl variables. We can distinguish— q — 1 state variables,
g speed variables, and 1 variable for total energy,

Uy

Udqul
U = Ud—q

Ud-1
Uqg

It is shown in [13] that the matrid connects state variables with speed variables and

written
0O N
M = ,
(v o)

whereN is a matrix ofR9~9~1 x RY, Thed — 1 first equations of (4) make this connection
explicit. The last line of this system (4) corresponds to the equation of energy.

2.2. The MHD Equations

The ideal MHD equations characterize the flow of a conducting fluid in the preser
of a magnetic field [17]. They represent the coupling of fluid dynamical equations wi
Maxwell's equations and by neglecting displacement current, electrostatic force, visco
effects, resistivity, and heat conduction, one obtains the following ideal MHD equation:

p P
il B Ly Bou-u®B 0
at | pu pu®u+p*l—% -7
PE (PE+pIu—(u-B)>

wherep is the densityB = (By, By, B;) the magnetic fieldy = (u, v, w) the flow velocity,
p the thermal pressurgy* = p+ BZ;MB the total presure, and the magnetic permeability
of vacuum. The total enerdf is defined bypE = pe + 1pu-u+ BzTB with ¢ the internal

energy and the pressupds related to the internal energy through the gamma-law equatic
of state

p=(y—Dpe.

To this system, we must add the condition(@y= 0 on the magnetic field.
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Under the one-dimensional approximation with plane symmetry, we obtain the follow
system of conservation laws,

pou

1% uBy — vBy

By uB, — wBy

B, 2

9 pu? + P*|

_ —_ =0 5
ot pu aX ByBy )

pv puv — =~

pw puw — 2B

rE Bu(Byv+ B

(pE+p*)U— x (Byv + Byw)

i

with By, thex-component of the magnetic field constant to satisfy the conditioiBalix O.
We introduce a lagrangian mass coordinatby the relatiordm= pdx and we obtain the
one-dimensional ideal MHD equations in mass coordinate

—u

T —Byv

By —Byw
B, P P, 0 6
a| v |Tam B8, =0 ©

v n

w _B&B

E ®

ub, — %(Byv + Byw)
Here,7 = % is the specific volume of the fluid and we define

“EeBE

21 w

For the ideal MHD equations, there exists a function enty ¢) strictly convex [21]
and a function temperatuiie(z, ) positive such that

—Tdé =de + pdr

and frome =E — Ju-u— 5.B - B, we obtain
B, B,
—Tdé =dE —udu—vdv — wdw — —d(rBy) — —d(zB,) + P.dr. @)
I I

For a regular solution of (6), we obtain easily tﬁ% =0 and an entropic solution of (6)
satisfies% <0. In the case of an ideal gas, the entropy is pt”. Furthermore, for this

system, the entropy flux is zero

dg \'df(U)
YU, <dU> 0 =° (8)
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The system of MHD equations is invariant by galilean transformation (cf. [17]) and r
versible for regular solutions. Consequently, it satisfies the hypothesis of Theorem 2.1.
can now exhibit the vectord e R, & € R®, and the matrixM € R® x R® for the system of
MHD equations in one dimension. From Egs. (7) and (6), we deduce that

—P,
By
"
1| B
V=_| » 9)
T u
v
w
-1
It is easy to see that Eq. (6) is of type (4) setting
P. 0 0 01 0 O
B 0O 0 0O 0By O
0
B 0 0 0 0 0 B
W=|-= and M= (10)
" 1 0 0 0 O O
iy 0B 00 0 O
—w 0 0 Bk O O O

For the MHD equations, the state variables areBy, B, [17] and the speed variables
u, v, w. The matrixM can be written

0 N
M =
(v o)

with N a square diagonal matrix & x R given by

0O 0 O
N=|0 Bx O
0 0 By

The couples of variablgs, P,), (v, By), and(w, B,) are directly connected. This particular
connection will be the basis of the numerical scheme.

3. A CLASS OF NUMERICAL SCHEMES

In this section, we present the main features of a new class of numerical scheme:
systems of conservation laws which satisfy (1) and (2). These schemes satisfy gooc
tropy properties under CFL conditions. Then, we describe a particular scheme for
one-dimensional lagrangian MHD equations.

3.1. Construction of the Scheme

We consider a mes{f2;) of R with Qj =[m;_1,2, mj;1/2]. The length of each segment
Qjis Amj =mj 12 —Mj_1/2. The quantitie&;Jjn or \IJJT1 are mean values &f or ¥ defined
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at the center of cef?; at timet,. Following a finite volume approach, we integrate Eq. (1
in the cellQ;:

aU ; -
/Q] Sodm+ fU)], — )], =o.

A time discretization of order 1 gives

At
n+1 n n

So, we have to evaluate(U)!, , to write the scheme completely. To do this, we use tr
particular form (4). We introduce the following definition

DerINITION 3.1. A Sylvester decomposition of a matr is defined byp reals
(1i)i=1..p and p vectors(lj )i=1.., such that

i=p
M=l
i=1

This decomposition is not unique afd< p < oo whereP is the number of eigenvalues
of M distinct from 0.

So, at the interface between c&lj and cell2j,1, the matrixM can be written under
the form

i=p
:U'i,1+2|| J+2|| i+3
i=1

T
NI

and the numerical flux becomes

n n
Z Mi,j+§(‘1’j 'Ii,j+%)|i,j+% + Z Mi,j+%(‘1’j+1"i,j+;)|i,j+§
M J+1<O i, J+1>0

n _
f(U)JJr% — )
1 2
) Z /‘i,1+%( i |1+2) Z Hij+3 ( 1+1'|i,i+%)
MIJ+1<O ;IJ+1>O
(12)

where the first line is a vector &~ and the second one a real®f This flux is consistent
and is upwinded according to the signaf;;1/2.
3.2. Entropic Schemes

In this section, we demonstrate that under a CFL condition, this class of scheme
entropic. In the whole paper we use the mathematical convex enfroftyy MHD and
many other problems is the opposite of the physical concave entrgpy —S. This is
detailed in the following. We also assume in the proof Mat 0. This is not a restriction
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and is compatible with physical situations we are interested in smee—% <0, where
T > 0 is the physical temperature.

LEMMA 3.1. There exists a constant}‘& 0 such that if

At

then
E(UPTY) < &(U).

Remark 3.1. Theoretical analysis of the constalit shows that this constant is always
greater than or equal to the maximum eigenvalue of the Jacobian matrix. We refer to [13]
the complete analysis, which is rather technical. In practice we always do as if this cons
is equal to the maximum eigenvalue of the Jacobian matrix. It is the case for the scheme
introduce in the following Subsection 3.3.

Proof. We defineJ (@) by U («) = U +a(U; n+l_ ”) fora € [0, 1]. Thus, we obtain
EUW0)=£WU n) andé(U Q) =& n+1) We make a Taylor expansion ®betweerlJ (0)
andu (1). There existsy € [0, 1] such that

dsU 1d2s(U
EUO) = sU ) - EC@) gy, JEED@)

4o 5 dgz - (14)

The term(1/2)(d%& (U («)) /da?) (o) can be written

1d2:(U () 1d /dé dU(e)
U@, 1 (&0,

2 da2 dU da

Knowing that?9® =U** —UP, we deduce

1d%U ()
2 da2

1 d
(0 = 2U7 —UD) 5 ey (U7 - U)).
As & is a strictly convex function ofJ, the left-hand side is a quadratic for@y definite
positive such that

1d% U (@)

2 de @ =@y,

We have now to look at the terfi'5© (1) of (14),

dé(U@) . dg dU(e)
T de YT de P
= (v Ut - up)
t At

n+1 n n
A Am (f(U) f(U)jf%).
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With the decomposition (12), we obtain

~( (FO = F WD) ==Vl [ ST s (1)

M+l <0

+ Z Mi,j+%(|i,j+2 ‘I’?+1)|i,j+%

Hij+3>0

n+1,t
-V Z “IJ——(IJ—— wi l)'J + Z M'J--( -3 q’?)'hj—%

/4” 1<0 |J—l>o

1 2 2

~3 > Mi,j+%(‘i,j+§"p?) + > Mi,j+§(|iﬁj+§"1'?+1)
”’i.j+%<0 /‘“i.j+%>0

l n 2 n 2

ol X i wie) X g (i)

#j-3<0 #5-3>0

In (9), we have/; = —% < 0. Then, using the fact th&Vd)er'l < 0inthe physical situations
we are interested in and using the inequadiby< %(a2 + b?) in the second term of the first
line and in the first one of the second line, we have the inequality

_(an+1)t<f(U)?+% _ f(U)Tf%)

< —*(Vd)n+1 Z (‘“LH%) <[Ii’j+% . (\IIT — qunﬂ)}z

Hiiv} <0

n 2 n+1 2
— [li,j+% . \IIJ.:| — [li,j 1 \11]. } )
n 2 n+1 2
+ E Hij+1 [Ii,j+§ "I’j+1} + [Ii,j+§ ’ ‘I"j }

H’i.j+%>o

2 2
+ Z —Hij+i (|J+§'\I’?> - Z l’«i,j+5—2‘(|i,j+%'q’?+1)

M,J+1<0 W +1>0

2 2
0 (e ) X gy ()

u,,,;<0 M.J,;>0

i
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We use
2 2
n+1 n+1
> Mi,j+%{|i,j+%'\pj } + Y Mi,j+§['i,j+%“1’j }
U'|J+1<O MIJ+1>O
2
1
D DI G| (PR D TN (SRR g
. 1<0 1>0

-3 ”,_

_ +1 +1 +1\t +1 _
= (UMY MY (e M = o,
It follows that

—(vr(f,, - )

2
(V)n+l > () g - (9] — 9]

“u+1<0

2
+ Z Hij-1 [li,jf%'(‘lf?—\ll?ﬂ)}
M”7;>O

We know that(Vd)”Jrl < 0, thus we deduce that there exists a quadratic f@mnuefinite
positive such that

(P (U], = T, ) = Qa(w] — 9.

Furthermore, we define the quadratic fo@gsuchthaQs (U — UM = Qp(w]** — ).
We come back to Eq. (14) and write

s(Uf‘)—s(Uj“”)>< Q3—+Ql>( n_ ),

As soon as we have the positivity 6fQ3(At/Amj) + Q4, the scheme satisfies an entropy

inequality. If we choose
|Qs(U)]
C! = su ( )
AN ()

At
(:n'—];;f < 1,

under the condition

the scheme is entropicm

ProPERTY3.1. If condition (13) is satisfied then specific volume and pressure calcu-
lated by the scheme remain positiie the case of an ideal gas.
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Proof. Since the scheme is entropic under a CFL condition, we Bav@*l) < S(U}‘).
So, in the case of an ideal ga(t?)’* <ef'(x])r~t <& (x]*h) 71 It follows that
s? >0 andrjn > 0 for each(j,n). m

3.3. A Particular Scheme for the MHD Equations

M=0N
Nt 0O

with N = (N j)1<i,j<3 @ SqQuare matrix oR® x R%. We decompos# with 18 realsuy and
associated vectotg. For each(, j) e {1...3}2 and fork =i 4+ 3 x j, we choose

The matrixM is written

_ M _ M
Mk = 2 s Mk+9 = 2
and
0 0
1 1
0 |1 O
I = R ) lkto=
1 -1
0

The non-zero terms are thtlh and the(j + 3)rd components of the vectors. We check the
these vectork, and the coefficientgy define a Sylvester decomposition of such a matri
M. In this section, we present an example of a scheme for the MHD equations usil
particular Sylvester decomposition of mathk If we suppose thaB, £ 0, then matrixM
has 6 non-zero terms; therefore we can use the preceding decomposition introducing
realsC,, C,, Cs strictly positive which correspond to some physical speeds in lagrang
coordinates. In the case wheBg # 0, we propose a Sylvester decomposition with

m1=1 po= -1 uz= By, pa = —By, us = Bx, ue = —Bxy,

and the vectors

=
=

ooﬁ
o ke

o o o o5
NS Y

o o
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0 0
[Bxlp IBxlp
2C, 2C,

0
0
0
[Bxlp [Bxln
o — 2C, I 2C3
5 0 s 6 0
0 0
Cs _ Cs
2u|Bx| \ 2ulB«

In the case wher8, =0, we propose the following Sylvester decompaosition with
mr=1L po=-1 uz3=1 pa=-1 us=1, pg = -1,

and the vectors

=
[

hS)
3
<

=
|
|
>
|
|
o O
NS

OO OO o o OO OO oo o o
|
OO oo o o O O O O
s 3 °o
(%] N

In both cases, we check that

I
o

M= /14||||t

1
AN
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If we come back to the equations of MHD, the numerical flux is

(Pn +C11+ ) (P:Hl C11+1ul+1)

fo)n = —
( l)H'% 2C1Aj+%
(f)" . =—B ( BByt Caiig® ) ( BB Cajig? J+1)
2 H_% o X ZCZ.H%
(fa)" | = — (7BxBQj+C3,j+%wT) (-B.B), - 03,1+%")T+1)
3 j+% x 2C3j+
(fa" | = (P:j+cl,1+%”?)+(Pfj+1 CLH%”?H)
4 H‘% - 2
(=B +C, ,100) +(~BiBY, —Cy L1 00,y)
(fS)?+; = 2 21 . (15)
(fo" , = (7BxBlqu+Ca.j+%w) ( BB,y — C3.J+%w?+l)
841 = 2
2 2
(f)" | = (Pn +Cy iU J) _(P*HHI C11+1“J+1)
! H'% 4Cl.j+%

n n 2 2
(_BxByi +C2.j+%”j) ( BxBJj1 — Cojsg? J+1)
4Cz<|+%“

n n 2 n n 2
(*BXBzi +C3.1+5—21'”j) *(*BXBzHl*C&H%wiH)

_l’_
4C&j+%#

Again, we see that the couples of variab{&}, u), (By, v), and(B,, w) are connected:
here, they are linked by the three coefficiedits C,, andCs. We know that for every choice
of the constant€y j11/2, Coj+1/2, andCs j+1/2, under a CFL condition, the scheme is
entropic. So, to simplify, we propose to choose

C]_,j+§ = CZ,J+§ = Cg,j+% = mia)(Mi,j [, [Ai,j+1D)s (16)

where); j are the eigenvalues of the Jacobian maﬂlﬁ%’—)(uj ). We know that system (6)
is hyperbolic with seven real eigenvalues

C C.
o, =+ R 4=
T T T

corresponding to three MHD waves: fast waves, slow waves, aneéilvaves. They are
defined by

B2
cZ="x
¢ = 3(@)2+ @) - 47¥), 17)

¢ = 1(@)? - \/@@)* - 40272),
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with

_ .. /p? _
a=714/P3 — 5

r(Ber B§+B§)
T

(18)
(a*)Z — a2 +

3.4. Comparison with the Roe Scheme

We demonstrate in this section that if the fi@lds vanishing, the Roe scheme and the
preceding particular scheme are similar and if not, they define different schemes. Tt
on numerical examples, we will compare both. We remind the reader of the definition
some well known properties of the Roe scheme.

The resolution of the Riemann problem

au afu)
W_I_ am =0

U(m, 0 =U, fm<0O
U(m, 0 =U, ifm>0

is replaced by the resolution of the linearized Riemann problem

5+ AULUDGE =0
U(m,0) = U, ifm<O
Uim,0 = U, if m> 0.

Here, the Roe matriA(U,;, U;) is required to be consistent with the Jacobian matrix

AU, U)= % to have real eigenvalues and a set of linearly independent eigenvectc

and to satisfy
f(Ur) — f(U) =AU, U)Ur —U)).

The linearized Riemann problem has a solution composed of eight states separate
seven discontinuity lines. We note that) =17 the eigenvalues oAU, U;), (Vj)j=1.7
the associated right eigenvectors, &fg ;-1 7 are defined by

i=7
U —U =) AV
i=1

The scheme is written in conservative form (11) and the numerical flux is given by

1 1=
Groe(U), Up) = E(f(UO + f(Uy)) — §Z|}\i|,3ivi-
i=1

In the following, for each variable, we notex = (o + o )/2 andAa = oy — ;. The coef-
ficient p, is an evaluation o(%)s and p, is an evaluation ofg—g)r.

3.4.1. The case of a vanishing magnetic fiel8uppose thaB, =0 and I§§ +B2=0.
The system degenerates to the system of hydrodynamics. We note

(Y r winie P
= (ar>$(r’8) with & = 1

ﬁl\” O,\L
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The roe matrixA(U,;, U, ) has two eigenvalues different from zekg = — ¢/t andi; =/,
with the eigenvectors

e e
0 0
0 0
V)= —Alg s V7= —)»7?
0 0
0 0
— U+ p) ~E0aU+ P
and
TAp T2Au
57+ﬁ1——m7 Br—BL=— =

Itis notnecessary to make explicit here a complete set of eigenvectors to obtain the num
flux; see [3] for the complete set. Thus, we obtain the lemma

LEMMA 3.2. In the case where Band §§ + §§:0, the numerical flux of the Roe
scheme and the numerical flux given(@®) are identical if G =c/z.

Proof. We have just to compare the first line, the fourth line, and the last line of t
numerical flux. The other lines are zero. The first line of the numerical flux of the R
scheme is given by

Uy + Uy

Groe,l(UI, Ur) = - 2

If C1jt1/2=C/7, thenGe1(U], Uj“+1) = fl)’j‘+1/2. The fourth line is given by

1/
Groea(Uy, Uy = PPy 2 (;o% - ﬂ1)>

2 2
_p+p 1lcAu
T2 2 7 °

If Cyjy1/2=C/7, thenGes(U], Uj“+1) =( f4)’j‘+1/2. The last line can be written

up +u 1/ c/c_ _ ¢/ c_
GI‘OE‘,?(U|1 Ur) = M - E(/glﬁ(;—u - p) +ﬂ7ﬁ(—;_u - p))

_U|p|+Urpr 1(64 63 )

?36(.31 - B7) — = p(B7 + B1)

2 2
U| p| + Ur pr 1 (EAU '[_5Ap
2 2 T c

If Cl,i+1/2 = E/'E thenGroeJ(U _n’ an-&-l) =( f7)?4—1/2' We conclude that i61,j+1/2 - E/T_,
thenGroe(U, Ul )= f(U)] 1. ®
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We can make the following remarks:

Remark 3.2 (1) This proof is still true wherB, =0 and I§§ + BZ0 because in this
case, the system of MHD equations degenerates to the system of Euler equations i
replacep with P,.

(2) Inthe case wherBy #0 andlif, + I§§ =0, we can exhibit another set of eigenvec-
tors. We know that in this case, the Adfa‘'waves are of order of multiplicity 2 or 3. Hence,
we can prove that the numerical flux of the Roe scheme and the numerical flux given
(12) are identical if we choos®; =€ /7, C, =C,/7, andC3 =&/ 7.

(3) Inthe cases presented here, both numerical fluxes are equal. So, we can deduc
in these cases, the Roe scheme satisfies also an entropy inequality under a CFL conc
Nevertheless, we know that the approximate Riemann solver of Roe can calculate unphy
intermediate states, especially in regions of strong compressions. Let us exhibit sucl
example. In [20], Munz demonstrates that for the Riemann problem given by Eq. (1) ¢
the initial conditions

U = (10, 0, 0, Ug, vo, wo, Eg)* form<0

Uim,0) =
( ) { U; = (10, 0, 0, —up, vo, wo, Eo)t form=>0

with ug > 0, the Roe linearization fails if
Uo
Co

>1
and co = /¥ Poto is the Eulerian speed of sound. In this case, the intermediate dens
calculated by the Roe solver becomes negative.

_3.4.2. The case of a non-vanishing magnetic fieldle suppose thaBy # 0 and I§§ +
B2 # 0. We adopt the notations

a=1/pp. — B
5 2 ~ 32
by = BT and b= B
2 2

The matrixA(U;, U;) has seven eigenvalues ordered

with

Cs = \/g (@92 — /(@)% — 4a2h2)
& = \/;((a*)z + /(@)% — 44202).
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The coefficient®; are the coefficients of decompositiorlgf — U, on the set of eigenvectors
and we introduce

vi =B+ B
ve =Br— B
Vs+ = Bs + B3
Ys = Bs— B3
Ya = Bs+ B2
Ya = Bs — B2

We note

&2 B2 & B2 1
o= 5 - X Z(@_&), s = _X_Z(@_g
s I P ( S a) f I m _L.( f a)
and

S_{SQF(BX) if B¢ #0
o if not.

We obtain the set of eigenvectors

8] ) ) [ 8 ]

_ BBy _0 _ BBy

n —sBz/Tu "
—@ SByJ/T/ —@

Vi = —A16¢ | » Vp = 0_ ’ V3 = —A30s | »

3. -B B, B,
By B z x By
ley B. A3 w
— y —
2 BB _ 5y BB

170 | —(B,v — Byw) | n

o1 L @3 |
_ 5, -
p: By
. B,
V4 = - 0 s
0
0
~ B2 o«
L pazB_M - pr_
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s [ 6¢ ]
_ BB, 0 BB,
" —sB, /T I
ZBZ — 27Z
—BXT SBy T ——BLB
Vs = —A5ds | » Vo= 9 s and V7= —A78¢ | »
B, B, B B
— — DBy _
BxB; — = _ By B,
A5 | (B,v — Byw) | A1,
L &5 | L o7

o = 8s(& — Ml — P) — AP1 (B2 + BZ) + 4 B (vBy + wBy) fori e {3, 5},

w
a; =3f(i; — 30— ) =222 (B2 + B2) + 2 2B, + wB,)  for e (1,7}

The coefficients of decomposition on the set of eigenvectors are given by

PAT 4+ Ae
134:ﬁ,
P — PP
VT - _
+ —
Ya =~ —7as = (ByAB:— B:ABy),
* T s/u(Bj+BY
1 EAp 872 — _
+ S
- = T ByABy + B,AB,) |,
Vi 8f652—8562f (pf — PP Bgl_l_ Bg( y= Py ABy)
L & Ap 572 - _
= T ByAB, + B,AB,) | ,
Vs (SSCZf—(Sng(pt—ppe B)2/+ Bg( y= By 2ABy)
_ - _
ya (BZAU_ BzAw),

- B2+ B2

Ssit BzAw + ByA
%(AUJFS_“M),
& (s — 1) B, B+ B2

8ti BAw + ByAv
Vo= <Au+f—M—Z = >
&1 — b9) B. B+ B2

Vi =

We can demonstrate the following lemma

LEMMA 3.3. Inthe case where,B# 0and BT§ + §§ =0, the Roe scheme and the scheme
given by the numerical flu¥L2) are different.

Proof. Itis sufficient to demonstrate that the fifth component of both numerical fluxe
is different when the magnetic field is non-zero.
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Groe,S(UI s Ur)

- Bgspn-1 62fBng(ﬂ ﬂ)+6§BX§y(ﬂ Bo) + 2By — po)
= 2 yl yr o\ 72 " 7 1 72 " 5 3 T z\P6 2
B 1

& BBy  &BBy & _
= Z(Byl‘i‘Byr)_E(lﬁ " f+_[% 0 Vs +?Bz7/a

B 1
= —7X(Byl + Byr) — E(OllAU +a2Av + azAw),

wherea, o, andas are coefficients. Let us calculate,
. cf BB, T 2BBy T
1= > ~ - 5 ~
2 u Ct(Bs—38f) 12 p Cs(8s — 1)
_ BBy (ef/?— 65/1_>
n ds — 8¢ )

This coefficientx; is non-zero whemy £ 0 and Igf, + B_§ #0. If we look at the numerical
flux given by (12), we see thdt is independent oAu and only depends oav. Then, we
deduce that both schemes are differem.

In the next section, we will propose examples to compare both schemes.

4. NUMERICAL APPLICATIONS OF THE SCHEME

In this section, we present the robustness and accuracy of the particular scheme des
in the previous section through numerical examples. We propose various shock tube |
lems which will be composed of all (or a part of) the MHD waves. We compare our rest
with results obtained by other approximate Riemann solvers, in particular with the |
solver. The same scheme is used to compare both solvers. To test this scheme, we hav
a lagrangian one-dimensional code and we only propose results of order one in spac
time. The values of left and right states for the following test cases are inspired by the v
[5—7] except that following [7] we take = 1.4. As noticed in [7] the numerical solution
with y = 1.4 is very close to the numerical solution with= 2 [5]. The CFL number is 0.9
with the constant set according to formula (16).

Let us emphasize that the discussion of numerical results is a subtle task for ideal M
even in 1D. We will see this for the third test case.

4.1. Shock Tube 1: A Coplanar Riemann Problem without Normal Magnetic Field

For this case, initial conditions ae, u, v, w, By, By, B;, p) =(1,0,0,0, 0, 1, 0, 1000
for 0<x <100 and(p, u, v, w, By, By, B, p)r =(0.1250, 0,0, 0, —1, 0, 0.1) for 100<
X <200. We take 800 points on a length discretization of 200 and we show the solu
at timet = 1.4. In this case, the longitudinal component of the magnetic field vanish
Consequently, the system of MHD equations reduces to the system of gas dynamics v
new pressure law given by* = p+ B?/2u.

We notice that Alfen waves and slow waves vanish. This problem is composed of a1
rarefaction going to the left, a fast shock going to the right, and a tangential discontin
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speed u
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3.20

by
log pressure

9
34

0 0.50 1.00 1.50 2.00 "o 0.50 1.00 1.50 2.00
x (10%) x (102

FIG.1. Shocktube 1, order 1.

which is a contact discontinuity through whigh is kept. Results are given in Fig. 1 and are
compared to the exact solution. We can observe an undershoot at the contact discontinui
the density profile: it is a frequent shortcoming of lagrangian codes sometimes called “v
heating.” These results are satisfying and very similar to the results from a Roe solver.
comparisons with a Roe solver are not presented here because we can'’t see any differ
on the pictures.

4.2. Shock Tube 2: A Coplanar Riemann Problem with Normal Magnetic Field

Initial conditions are (p, u, v, w, By, By, B;, p)=(1,0,0,0,0.75,1,0,1) for 0<
X <400 and (p,u, v, w, By, By, B;, p)r =(0.1250,0,0,0.75,—1,0,0.1) for 400<
X < 800. We take 800 points on a length discretization of 800 and we show the solutior
timet =80.

In this case, we observe a fast rarefaction propagating to the left, a compound w
composed of an intermediate shock and a slow rarefaction going to the left, a con
discontinuity, a slow shock going to the right, and a fast rarefaction wave going to the rig
Results are proposed in Fig. 2. We recognize on the density profile each wave very preci
Again, we notice an undershoot at the contact discontinuity. Here, it is more interesting
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FIG.3. Comparison of the solver given by (15) and the Roe scheme, Shock tube 2, order 1. The stiffest pre
is provided by the Roe scheme.

compare the results with another approximate Riemann solver: a Roe solver. We proj
both results in Fig. 3 which represents a detail of the density near the contact discontini
We notice that the Roe solver is more precise on the contact discontinuity, otherwise,
results are still very similar.

4.3. Shock Tube 3

In this last case, the z-component of the magnetic field is not zero. Initial conditions
given by(p, u, v, w, By, By, B;, pi=(1,0,0,0,0.75,1, 2, 1) for 0 < x <400 and(p, u,

v, w, By, By, Bz, p)r =(0.125 0, 0,0, 0.75, -1, 1,0.1) for 400< x <800. We take 800
points on a length discretization of 800 and we show the solution atttia@0.

This test case presents the following waves: a fast rarefaction to the left, a slow wave tc
left, a contact discontinuity, a slow shock to the right, a fast shock to the right, and twerAlfv
waves visible on the transverse components of the velocity and of the magnetic field.
case is of particular interest since seven distinct waves are propagating, especially¢ne Al
waves missing from the other test cases. Results are presented in Fig. 4. We can see
precisely each wave propagating on the different profiles. Here, the comparison with
Roe solver shows that the Roe solver treats the stiffness of the discontinuities in the solu
better than the conservative solver: this is quite clear in Fig. 5. Nevertheless, both res
give a coherent solution. This was also reported in [6] using high order different solver:

It is striking to observe that we may conclude abusively from the numerical results tl
the slow wave to the left is a slow compound wave. This numerical artifact has also b
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~— Roe solver
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FIG.5. Comparison of densities given by scheme (15) and the Roe scheme, Shock tube 3, order 1. The st
profile is provided by the Roe scheme.

reported in [6] using other solvers and refined meshes. Nevertheless following [2] suc
wave is excluded on theoretical grounds. So there is probably no compound wave in
case. We also refer to [18, 19] for numerical and theoretical investigation of a non-copla
Riemann problem in MHD and related problems. It seems to us that a deep understandir
these non-coplanar numerical Riemann problems in MHD is not really achieved nowad:
Moreover the question is far from the scope of this paper. So we do not follow furth
our interpretation of the numerical results of this test case, which was designed mainl
compare both solvers.

5. CONCLUSION

In this paper, we have shown that the lagrangian one-dimensional MHD equations sai
some particular properties, shared with other systems of conservation laws with vanisl
entropy flux. These properties are used to construct a class of entropic numerical sche
We present here a particular scheme of this class. Numerically, this scheme behaves
In the tests presented here, we can observe the phenomenon of “wall heating” at the co
discontinuity: this is an undershoot characteristic of a lagrangian calculation and it is
linked with the scheme itself.

This scheme has been compared with other approximate Riemann solvers. In the se
of numerical results, we have presented a few comparisons with the Roe scheme. They
similar in cases where one component (longitudinal or transverse) of the magnetic f
vanishes. The conclusion of this comparison is that we have quite the same behavio
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both schemes. But, the scheme presented here is far more interesting because it is ver

to

compute and it satisfies good properties. Comparatively, the Roe scheme require

knowledge of a set of eigenvectors.

We are now working on a full extension to 3D ideal MHD, with careful attention paid

the free divergence constraint on the magnetic field. This will be the subject of a forthcon
paper.
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